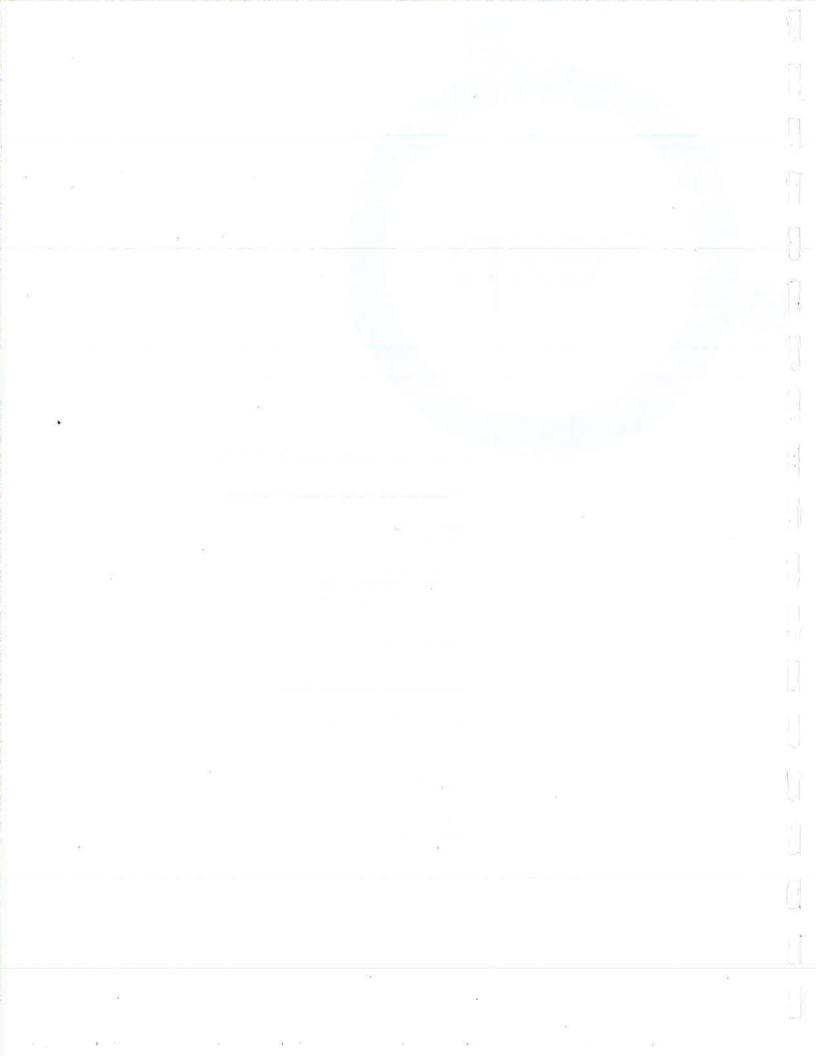


Processed Aggregate Review

Type of Document Final Report

Project Name

Processed Aggregate Review Ferma's Carden Quarry, Kirkfield, Ontario


Project Number BAR-0008977-D0

Prepared By: Leigh Knegt, P. Eng.

Reviewed By: Robert Ferguson, CET

exp Services Inc. 14 Cedar Pointe Drive, Unit 1510 Barrie, Ontario L4N 5R7 CANADA

Date Submitted March 24, 2017

Ferma Aggregates Inc.

Processed Aggregate Review

Type of Document: Final

Project Name: Ferma's Carden Quarry

Project Number: BAR-00008977-D0

Prepared By: Leigh Knegt, P. Eng.

Reviewed By: Robert Ferguson, CET

exp Services Inc. 14 Cedar Pointe Drive, Unit 1510 Barrie, Ontario L4N 5R7 Canada

T: 705.719.1100 F: 705.719.1109 www.exp.com

Date Submitted: March 24, 2017

	* ************************************	Π
		1). <i>1</i>) 1
*		(, t
3:		
	Α	(1
		ij
		1
		1
		i i i
π.		X.
		1
•	in the second se	
	g.	
eri ar eri eri an an ar		

Legal Notification

This report was prepared by **exp** Services Inc. for the account of **Ferma Aggregates Inc.**.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. **Exp** Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

2 Background

Ferma Aggregates Inc. owns a quarry development on Lots 7, 8, 9, and Part of Lots 6 and 10, Concession IX, Carden Township in Victoria County. The Class "A" quarry license encompasses the entire 427.2 hectare property, of which extraction is to occur in two segments totaling 205 hectares to an average depth of 32 metres (elevation 235 m.a.s.l.).

PHYSIOGRAPHY

The topography and surficial geology of Carden Township are a result of glacial activity during the Late Wisconsinan Substage of the Pleistocene Epoch, insignificantly impacted by postglacial erosion and deposition. The landscape varies from gradually sloping with gentle ridges and plateaus, infrequent knolls, and sinks represented by poorly drained swamp areas.

Fractured limestone bedrock is exposed at the ground surface over 10% of the Ferma site. A thin veneer of topsoil and glacial till of less than 0.3 metres depth over fractured limestone bedrock supporting alvar habitat (open range) and forest, covers approximately 77% of the site. The remainder of the site consists of 5% swamp, and 8% hay fields where overburden/topsoil depths are greater than 0.3 metres.

The site is split into southerly and northerly sections by a tributary stream of the Talbot River which flows from east to west. The east side of the southerly section has gently rolling topography, while the wet side hosts a poorly drained wooded swamp, a wooded rock knoll, and gently sloping open range.

North of the tributary stream, there is an upper plateau to the northwest and lower plateau to the northeast. The smaller upper plateau is separated from the lower plateau by a three to four metre high gradually sloping ridge. The ridge runs diagonally across the site intersecting the westerly and northerly boundaries at respective mid points.

GEOLOGY

SURFICIAL GEOLOGY

Overburden soils are generally thin and comprised of unsorted sand, stones, silt, and clay till. Total overburden thickness of 0.3 metres or less is found on approximately 87% of the site. The overburden is thickest in the southeast corner of the site where it varies between two and five metres in depth. Where overburden exists over the remainder of the site, it is generally between 0.15 to 0.3 metres deep.

BEDROCK GEOLOGY

GENERAL DESCRIPTION

The site is underlain at depth by Precambrian aged granite which in turn is overlain respectively by: Ordovician aged shales and sandstones of the Shadow Lake Formation, limestone and dolomitic limestone with interbedded shale of the Gull River Formation, and limestone with interbedded shale of the Bobcaygeon Formation (Ontario Geological Survey – MNR, 1981).

Quarry development will involve extraction and removal of the Ordovician aged limestone of both the Gull River and Bobcaygeon Formations.

BEDROCK LITHOLOGY

Based on previous exploration borehole advanced at the site, the general bedrock lithology is summarized as follows.

PRE-CAMBRIAN BEDROCK

Pre-cambrian rock was intersected in some of the boreholes at between 223.5 and 229.5 m.a.s.l. The pre-cambrian rock was identified as granite in borehole logs.

SHADOW LAKE FORMATION

The Shadow Lake Formation is between two and four metres thick, and deposited unconformably upon Precambrian rock. It consists of quartz sandstone (lower member), and dolomitic limestone with shale partings (upper member).

GULL RIVER FORMATION

Above the Shadow Lake Formation is the Gull River Formation consisting of the following three submembers:

Lower Member

Lying directly on top of the Shadow Lake Formation, the lower member of the Gull River Formation is between eight to ten metres thick consisting of calcitic dolostone, dolomitic limestone, and shale partings with less than 1% shale/mudstone. Proposed extraction will penetrate to this formation.

Middle Member

The middle member of the Gull River Formation is one metre thick and was only documented at one of the borehole locations. It consists of a fine grained limestone with shale/mudstone beds.

Upper Member

The upper member of the Gull River Formation is between four and six metres thick, consisting of fine to medium grained limestone with interbeds of shale/mudstone representing 2% to 4% content.

BOBCAYGEON FORMATION

The Bobcaygeon Formation, the uppermost bedrock formation on site, has been subdivided into the following sub-members.

Lower Member

The base of the Bobcaygeon Formation is found at depths of from 20 to 25 metres below ground surface. The lower member of this formation is divided into "lower (lower)" and "lower (upper)" sections. The lower (lower) member consists of three metres of light grey to brownish grey limestone. Above this is the lower (upper) member consisting of nine metres of medium to fine grained, medium grey limestone, and is described as fossiliferous. Both members have interbeds of dark grey undulating shale/mudstone partings representing 4 to 6 % content.

Middle Member

The middle member of the Bobcaygeon Formation is six to seven metres thick consisting of medium grey to medium dark grey, fine to medium grained fossiliferous limestone with minor highly calcareous limestone zones, and shale/limestone beds having an estimated contend of 3%.

Upper Member

The upper member of the Bobcaygeon is three metres thick and is at, or close to the ground surface. It consists of medium dark to medium light grey, medium to fine grained, fossiliferous friable limestone with interbeds of shale representing less than 1% content.

3 Laboratory Testing

Samples from piles 1, 2, 5, 6, 8 & 9 were obtained and returned to **exp**'s laboratories for testing. The tests were selected to allow for comparison to the various physical properties requirements for the different aggregates specified in the Ontario Provincial Standard Specifications (OPSS). These aggregates include concrete, asphalt, surface treatment, granular materials and miscellaneous aggregates.

Grain size analysis testing was also undertaken on each sample. Since the purpose of this investigation is to assess the potential products that can be produced from this source and not specifically the suitability of the existing stockpiles, no specifications were used when plotting the gradation results for each pile. This information was used to allow for the description of the various piles based on grain size distribution.

The following table details the various tests that each sample was analysed using.

Test Method	Pile 1	Pile 2	Pile 5	Pile 6	Pile 8	Pile 9
LS-400 – Loose Density of Coarse Aggregate		Х			Х	X
LS-601 – % Finer than 75 µm	Х	Х			Х	Х
LS-602 – Grain Size Analysis	X	Х	Х	Х	Х	Х
LS-604 – Absorption and Relative Density	Х	X			Х	Х
LS-606 – Magnesium Sulphate Soundness	X	Х			Х	Х
LS-607 – % Crushed	X	Х			Х	Х
LS-608 – Flat and Elongated	X	Х			Х	Х
LS-609 – Petrographic Number	X	Х			Х	Х
LS-610 – Organic Impurities			X	Х		
LS-613 – Acid Insoluble Residue	X	X			Х	Х
LS-614 - Freeze/Thaw	X	Х			Х	Х
LS-617 – Two Faces Crushed	X	Х			Х	Х
LS-618 – Micro Deval	X	X	Х	Х	Х	Х
LS-620 – Accelerated Mortar Bar	X	Х	Х	X	Х	X
LS-631 – Plastic Fines			Х			
CSA A23.2 – 14A – Potential Expansivity of Aggregates	X	Х	Х		Х	Х
CSA A23.2 – 26A – Alkali-Carbonate Reactivity	X	Х	X	Х	Х	Х

The results for the above noted testing are presented in table form in Appendix B. Each table presents the test results for each pile that was tested and compares the results to the OPSS requirements for various materials. Individual test reports are presented in Appendix C.

The loose density of the materials was determined to provide an estimate of the volume to mass ratio for the processed stone. The following table presents the results of this testing, along with the relative density with is determined as part of the testing for LS-604.

Pile #	Loose Density (LS-400)[tonne/m³]	Relative Density (LS-604) [tonne/m ³]
1		2.666
2	1.548	2.683
8	1.545	2.676
9	1.521	2.670

The test results from the above testing program were compared to the results obtained from core samples extracted from two boreholes (BH1 and BH2) which were advanced in 2011 at the site by MTE. The depth of the tested portion of the cores reported below corresponds to the depth of excavation at the site. The testing reported by MTE was undertaken by **exp**'s Brampton laboratory, the same facility which provided all the testing shown above. The following table shows the results of the testing from the cores, as well as a comparison to the test results from this investigation.

Test Method	Test Name	BH1-11 (3-31')	BH2-11 (9-39'2")	Piles 1, 2, 8, 9
LS-601	Wash Pass 75 µm	2.4	2.2	0.8 - 2.1
LS-604	Absorption	1.48	0.85	0.68 - 1.11
LS-607	Crushed Particles	100	100	100
LS-608	Flat and Elongated	9.5	13.6	5.9 - 12.1
LS-609	Petrographic Number	111	110	114-129
LS-614	Unconfined Freeze/Thaw	22.4	16.6	6.1 - 21.7
LS-617	Two Faces Crushed	100	100	100
LS-618	Micro-Deval Abrasion	17.7	17.1	16.7 - 19.6
LS-606	Magnesium Sulphate Soundness	6.7	12.7	5.2 - 13.2

As seen in the table above, the results of the testing carried out on the core samples is very similar to the test results obtained during this investigation.

4 Comparison to OPSS Standards

The test results were compared to the requirements detailed in various Ontario Provincial Standard Specifications (OPSS) Division 10 (aggregates) Indexes. Specifically, this reports looks at the following aggregate uses: Concrete Coarse Aggregate, Hot Laid and Super-Pave Coarse Aggregates, Granular Aggregates, Surface Treatment Aggregate, Clear Stone, and Rip-Rap/Gabion/Rock Protection Aggregate. These are the most likely uses of the aggregates that would be produced from this source given the location of the quarry and the stone being removed from it. This report looks at the requirements for both the provincial and municipal versions of the specifications and details any items that are different between the two.

OPSS 1002 – Concrete Coarse Aggregate

The physical property requirements for concrete coarse aggregate are the same for both the municipal and provincial versions of the standard. The following table details the requirements for various properties, as well as the findings of the testing completed for this assignment.

Test Method	Test Name	Specification	Test Results
LS-601	Wash Pass 75 µm	2.0 % (max)	0.8 - 2.1
LS-604	Absorption	2.0 % (max)	0.68 - 1.11
LS-608	Flat and Elongated	20 % (max)	5.9 - 12.1
LS-609	Petrographic Number	140 [125*] (max)	114 - 129
LS-614	Unconfined Freeze/Thaw	6 (max)**	6.1 - 21.7
LS-618	Micro-Deval Abrasion	17 [14*]	16.7 - 19.6
LS-620	Accelerated Mortar Bar	0.150 % (max)	0.121 - 0.154
CSA A23.2-14A	Concrete Prism Expansion	0.040 % (max at 1 year)	Testing still underway
CSA A23.2-26A	Potential Alkali-Carbonate	Must plot as Non-	Non-expansive
	Reactivity	expansive	
LS-606	Magnesium Sulphate Soundness	12 % (max)	5.2 - 13.2

^{[*] =} requirement for concrete pavements

As the above table indicates, concrete coarse aggregate can be manufactured from this site as there are test results that are acceptable for every test excluding LS-614, which can be waived if the sample meets the requirements for LS-606, which some of the samples do. The stone in piles 8 and 9 meet the above requirements.

OPSS 1003 – Asphalt – Surface Course - Coarse Aggregate

The physical property requirements for asphalt surface course coarse aggregate are the same for both the municipal and provincial versions of the standard for Superpave mixes. The municipal version also includes the requirements for Marshall (HL) mixes. The following table details the requirements for various properties, as well as the findings of the testing completed for this assignment.

^{** -} can be waived if sample meets optional test LS-606 requirements

Test Method	Test Name	Specification	Test Results
LS-601	Wash Pass 75 µm	1.0 to 1.3 % (max)*	0.8 - 2.1
LS-604	Absorption	1.0 to 2.0 % (max)*	0.68 - 1.11
LS-607	Crushed Particles	60 %**	100
LS-608	Flat and Elongated	15 to 20 % (max)*	5.9 - 12.1
LS-609	Petrographic Number‡	120 to 145 (max)*	114 - 129
LS-613	Insoluble Residue	45% (min)*,***	4.7-6.1
LS-614	Unconfined Freeze/Thaw	6 to 7 (max)*,****	6.1 - 21.7
LS-617	Two Faces Crushed	80 (HL1[Muni] only)	100
LS-618	Micro-Deval Abrasion	10 to 17*	16.7 - 19.6
LS-606	Magnesium Sulphate	12 % (max)*	5.2 - 13.2
	Soundness		

^{* -} depending on the mix

As the above table indicates, coarse aggregate for surface course asphalt will be difficult to product for northern projects (the boundary line is just north of the site, passing through Washago and Norland in the vicinity of the site, as well as Highway 35 in the immediate area of the site). Piles 8 and 9 meet the specifications for SP12.5 and HL3/HL4 mixes that are south of the specified boundary.

OPSS 1003 - Asphalt - Base Course - Coarse Aggregate

The physical property requirements for asphalt base course coarse aggregate are the same for both the municipal and provincial versions of the standard for Superpave mixes. The municipal version also includes the requirements for Marshall (HL) mixes. The following table details the requirements for various properties, as well as the findings of the testing completed for this assignment.

Test Method	Test Name	Specification	Test Results
LS-601	Wash Pass 75 µm	2.0 % (max)	0.8 - 2.1
LS-604	Absorption	2.0 % (max)	0.68 - 1.11
LS-607	Crushed Particles	60 to 95 %**	100
LS-608	Flat and Elongated	15 to 20 % (max)*	5.9 - 12.1
LS-614	Unconfined Freeze/Thaw	15 (max)***	6.1 - 21.7
LS-617	Two Faces Crushed	80 to 95 %(min) (Muni. only)*	100
LS-618	Micro-Deval Abrasion	21 % (max)	16.7 - 19.6
LS-606	Magnesium Sulphate	15 % (max)	5.2 - 13.2
	Soundness		

^{* -} depending on the mix

^{** -} For municipal spec and HL3/HL4 mixes only

^{*** -} For provincial spec, may be waived if RAP is used in mix and testing is done on combined gravel

^{**** -} can be waived if sample meets optional test LS-606 requirements for some mixes

^{‡ -} For northern projects, blending with a non-carbonate rock will be required to meet the spec for SP4.75, 9.5, 12.5 and HL3/HL4 mixes

^{** -} For municipal spec and HL4/HL8 (60%) and MDBC (95%) mixes only

^{*** -} can be waived if sample meets optional test LS-606 requirements

As the above table indicates, coarse aggregate for base course asphalt can easily be manufactured from the stone at this quarry. Piles 8 and 9 meet the specifications for base asphalt coarse aggregates. Pile 2 would also be acceptable if it were washed, reducing the % finer than 75 µm value.

OPSS 1004 - Miscellaneous Aggregates - Clear Stone/ Gabion/Rip-Rap/Rock Protection

The physical property requirements for miscellaneous aggregates are the same for both the municipal and provincial versions of the standards. The following table details the requirements for various properties, as well as the findings of the testing completed for this assignment.

Test Method	Test Name	Specification	Test Results
LS-601	Wash Pass 75 µm	2.0 % (max)*	0.8 - 2.1
LS-604	Absorption	2.0 % (max)**	0.68 - 1.11
LS-607	Crushed Particles	50 to 60 %*	100
LS-608	Flat and Elongated	15 % (max)**	5.9 - 12.1
LS-618	Micro-Deval Abrasion	25*,**	16.7 - 19.6

^{* -} clear stone

As the above table indicates, clear stone, gabion stone, rip-rap and rock protection can easily be manufactured from this source. Some additional washing may be required to ensure that the % passing the 75 μ m sieve meets the specification on 2.0%.

OPSS 1006 - Surface Treatment - Coarse Aggregate

The physical property requirements for surface treatment aggregate are the same for both the municipal and provincial versions of the standards. The following table details the requirements for various properties, as well as the findings of the testing completed for this assignment.

Test Method	Test Name	Specification	Test Results
LS-601	Wash Pass 75 µm	2.0 % (max)*	0.8 - 2.1
LS-604	Absorption	1.75 to 2.0 % (max)*	0.68 - 1.11
LS-607	Crushed Particles	60 % (min)*	100
LS-608	Flat and Elongated	20 % (max)*	5.9 - 12.1
LS-609	Petrographic Number‡	60% non-carbonate (min)*	Carbonate Rock
LS-613	Insoluble Residue	60% (min)*	4.7-6.1
LS-614	Unconfined Freeze/Thaw	6 to 15 (max)*,**	6.1 - 21.7
LS-618	Micro-Deval Abrasion	25 to 30*	16.7 - 19.6
LS-606	Magnesium Sulphate	12 to 15 % (max)*	5.2 - 13.2
N	Soundness		
LS-703/704	Plasticity Index	0 (max)*	0 (non-plastic)

^{* -} depending on the class

^{** -} gabion stone/rip-rap/rock protection

^{** -} can be waived if sample meets optional test LS-606 requirements

 \ddagger - For northern projects, blending with a non-carbonate rock will be required to meet the spec for Classes 1, 2, 3, 5 & 6

As the above table indicates, surface treatment aggregate will be difficult to produce for northern projects (the boundary line is just north of the site, passing through Washago and Norland in the vicinity of the site, as well as Highway 35 in the immediate area of the site). Piles 1 meets Class 2 requirements and Piles 8 and 9 meet the specifications for all classes for projects south of the specified boundary.

OPSS 1010 - Base, Subbase, SSM and Backfill - Coarse Aggregate

The physical property requirements for base, subbase, select subgrade material and backfill material aggregate are the same for both the municipal and provincial versions of the standards. The following table details the requirements for various properties, as well as the findings of the testing completed for this assignment.

Test Method	Test Name	Specification	Test Results
LS-607	Crushed Particles	50 to 100 % (min)*	100
LS-614	Unconfined Freeze/Thaw	15 (max)**	6.1 - 21.7
LS-617	2 or More Crushed Faces	85 % (min)**	100
LS-618	Micro-Deval Abrasion (Coarse Aggregate)	21 to 30*	16.7 - 19.6
LS-619	Micro-Deval Abrasion (Fine Aggregate)	25 to 35*	28.7
LS-621	Asphalt Coated Particles	0 to 30 % (max)*	0
LS-703/704	Plasticity Index	Non-Plastic	Non-Plastic

^{* -} depending on the class

As the above table indicates, Granular A, B (Types I, II &III), M, S and SSM can be produced from this source. Granular O will be difficult due to the LS-614 requirement, as only one sample meet the specifications.

^{** -} Granular O only

5 Conclusions

This review of the physical properties of the processed stone produced at Ferma's Carden Quarry demonstrates that a wide variety of aggregate products should be able to be produced from this source. This includes OPSS coarse aggregates for concrete, surface and binder course asphalts and surface treatment as well as other products such as gabion/rip/rap/rock protection, clear stone and construction aggregates such as Granular "A" (19 mm crusher-run) and Type II Granular "B".

The test results from this investigation are generally in agreement with the test results obtained from core samples as reported by MTE in November 2011. The most significant variation between the two sets of results is the Petrographic Number (PN). The aggregate piles showed a much larger range of values and this variation was all on the higher side of the range. Since higher PNs are associated with poorer quality stone, this finding may have an impact on how the stone should be processed. The larger diameter stone fractions (greater than 13.2 mm) had PN values that were very similar to the cores. All the higher PNs were associated with the smaller diameter fractions. Based on this, if an aggregate with a lower PN is required, it may be possible to take the coarse fraction of stone produced during the initial processing and re-process it to produce the final product. Since the PN is based solely on the type of rock present in the sample, once the poorer quality stone has been removed, further crushing of the better aggregate should not result in a significant change in the PN value.

6 Closure

We trust this report is complete within our terms of reference, and the information presented is sufficient for your present purposes. If you have any questions, or when we may be of further assistance, please do not hesitate to contact our office.

Yours truly,

exp. Services Inc.

Leigh H. Knegt, P.Eng.

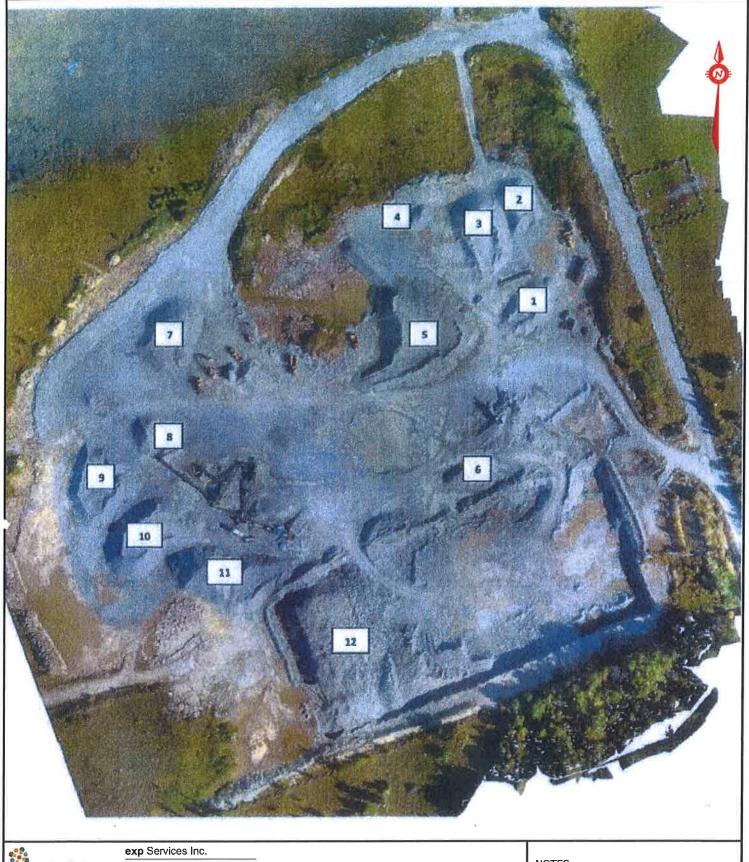
Manager, Geotechnical Services

Barrie Office


Robert Ferguson, CET

Manager, Laboratory Testing Services

Northern Region



Client: Ferma Aggregates Inc. Project Name: Ferma's Carden Quarry Project Number: BAR-00008977-D0 Date: March 24, 2017

Appendix A – Figure

	F
	Ţ
я 9	A
	A
	A
e e	
	Ų
	ij
e no e e e e e e e e e e e e e e e e e e	

t; +1.705.719.1100| f: +1.705.719.1109 14 Cedar Pointe Drive, Unit 1510 Barrie, ON L4N 5R7 Canada

www.exp.com

NOTES:

- PLAN PROVIDED BY FERMA GROUP

SCALE NTS	TITLE: Stockpile	Stockpile Identification Plan	
DRAWN:		ıarry - Lab Testing	PROJECT NO.
JF		arden, ON	BAR-00008977-D0

	M
	F
	IQ.
v ex	
	B
	Ü
	(1)
	1.0
	III
	Ĭ,
	<u>U</u>
	(1)

Project Name: Carden Quarry - Lab Testing Project Number: BAR-00008977-D0

Client: Ferma Group

Date: March 14, 2017

Stockpile #:

General Descrition of Stockpile Material:

1/4" to 3/8" Stone

						Potent	tial Products	Si			
Test	Method	Result	OPSS 1002 Concrete Coarse Aggregate	OPSS (MUNI) 1003 Base Asphalt - Coarse Aggregate	OPSS (MUNI) 1003 Surface Asphalt - Coarse Aggregate	OPSS (PROV) 1003 Base Asphalt - Coarse Aggregate	OPSS (PROV) 1003 - Surface Asphalt - Coarse Aggregate	OPSS 1004 Clear Stone	OPSS 1004 Rip-Rap/Gabion/Rock Protection	OPSS 1006 Surface Treatment Class 2	OPSS 1010 Aggregates (Granular "A", Granular "B-2")
% Finer than 75 um	LS-601	1.9	Pass	Pass	Pass	<u>≅</u> .	≌.				
Absorption	LS-604	1.11	Pass	Pass	Pass (3)	Pass	Pass (7)		Pass		
Magnesium Sulphate Soundness (%)	LS-606	13.2	Fail	Pass	Faii	Pass	Faii			Pass	
% Crushed	LS-607	100			Pass			Pass		Pass	Pass
Flat and Elongated	LS-608	9	Pass	Pass	Pass	Pass	Pass		Pass	Pass	
Petrographic Number	LS-609	129	Pass (1)		Pass (4)(6)		Pass(8)				
Organic Impurities	LS-610										
Acid Insoluable Residue	LS-613	6.1			Note (5)		Note (5)			Note (5)	
Freeze/Thaw	LS-614	20.8	Fail	Fail (2)	Fail	Fail (2)	Fail			Fail (2)	
2 Faces Crushed	LS-617	100			Pass						
Micro-Deval	LS-618	18.8	Fail	Pass	Fail	Pass	Fail	Pass	Pass	Pass	Pass
Accelerated Mortar Bar	LS-620	0.154	Fail								
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Pass								

- (1) Does Not Meet Specification for Concrete Pavement
- (2) Does Not Meet Specification for Freeze/Thaw See Test Method LS-606 Results for Pass/Fail
- (3) Meets Specifications for SP 4.75, 9.5, 12.5, HL3, HL3F, HL3HS, HL4, HL4F
- (4) For SP4.75, SP9.5 & SP12.5 and For Projects North of Washago/Norland and Highway 35, Will Need To Be Blended With Non-Carbonate Rock Such That LS-613 Test Is Greater Than 60%
- (5) For Projects North of Washago/Norland and Highway 35, Will Need To Be Blended With Non-Carbonate Rock Such That LS-613 Is Greater Than 60%
- (6) For HL1, DFc, SMA 9.5 and 12.5, SP 12.5 FC1 and SP12.5FC2. For HL3, HL3F, HL3HS, HL4 and HL4F see Note (5)
- (7) For SP9.5 and SP12.5 Only
- (8) For SP 9.5 & SP12.5 on Projects North of Washago/Norland and Highway 35 , Will Need To Be Blended With Non-Carbonate Rock Such That LS-613 Is Greater Than 60%

Project Name: Carden Quarry - Lab Testing

Client: Ferma Group

Project Number: BAR-00008977-D0

Date: March 14, 2017.

Stockpile #:

General Descrition of Stockpile Material:

3/8" to 1" Stone

						the second secon					
Test Me	Method	Result	OPSS 1002 Concrete Coarse Aggregate	OPSS (MUNI) 1003 Base Asphalt - Coarse Aggregate	OPSS (MUNI) 1003 Surface Asphalt - Coarse Aggregate	OPSS (PROV) 1003 Base Asphalt - Coarse Aggregate	OPSS (PROV) 1003 - Surface Asphalt - Coarse Aggregate	OPSS 1004 Clear Stone	OPSS 1004 Rip-Rap/Gabion/Rock Protection	OPSS 1006 Surface Treatment Class 2	OPSS 1010 Aggregates (Granular "A", Granular "B-2")
% Finer than 75 um	LS-601	2.1	Fail	Fail	Fail	Fail		Fail			
Absorption	LS-604	0.68	Pass	Pass	Pass	Pass	Pass		Pass		
Magnesium Sulphate Soundness (%)	LS-606	5.2	Pass	Pass	Pass (3)	Pass	Pass			Pass	
% Crushed LS:	LS-607	100			Pass			Pass		Pass	Pass
Fiat and Elongated LS-	LS-608	12.1	Pass	Pass	Pass	Pass	Pass		Pass	Pass .	
Petrographic Number LS-	LS-609	114	Pass		Pass(4)		Pass(8)				
Organic Impurities LS-	LS-610										
Acid Insoluable Residue LS-	LS-613	5.4			Note (5)		Note (5)			Note (5)	
Freeze/Thaw LS-	LS-614	6.1	Fail	Fail (2)	Fail (2)	Fail (2)	Fail (2)			Pass	
2 Faces Crushed LS-	LS-617	100			Pass						
Micro-Deval LS-	LS-618	19.6	Fail	Pass	Fail	Pass	Fail	Pass	Pass	Pass	Pass
Accelerated Mortar Bar LS-	LS-620	0.129	Pass								
	V3C C CCV V3D	Non Evanetic	Dass								

- (1) Does Not Meet Specification for Concrete Pavement
- (2) Does Not Meet Specification for Freeze/Thaw See Test Method LS-606 Results for Pass/Fail
- (3) Meets Specifications for SP 4.75, 9.5, 12.5, HL3, HL3F, HL3HS, HL4, HL4F
- (4) For SP4.75, SP9.5 & SP12.5 and For Projects North of Washago/Norland and Highway 35, Will Need To Be Blended With Non-Carbonate Rock Such That LS-613 Test Is Greater Than 60%
- (5) For Projects North of Washago/Norland and Highway 35, Will Need To Be Blended With Non-Carbonate Rock Such That LS-613 Is Greater Than 60%
- (6) For HL1, DFc, SMA 9.5 and 12.5, SP 12.5 FC1 and SP12.5FC2. For HL3, HL3F, HL3HS, HL4 and HL4F see Note (5)
- (7) For SP9.5 and SP12.5 Only
- (8) For SP 9.5 & SP12.5 on Projects North of Washago/Norland and Highway 35, Will Need To Be Blended With Non-Carbonate Rock Such That LS-613 Is Greater Than 60%

Stockpile #:

General Descrition of Stockpile Material:

Project Name: Carden Quarry - Lab Testing
Project Number: BAR-00008977-D0

Client: Ferma Group

Date: March 14, 2017

Screenings

Test	Method	Result
Organic Impurities	LS-610	4
Micro-Deval	LS-618	28.7
Accelerated Mortar Bar	LS-620	0.102
Plastic Fines	LS-631	Non-Plastic
Potential Expansivity of Aggregates	CSA-A23.2-14A	Not Complete(1)
Alkali-Carbonate Rectivity	CSA-A23.2-26A	Non-Expansive
Notes:		

(1) - Test takes 1 year to complete

14 Cedar Pointe Dr., Unit 1510 Barrie, Ontario L4N 5R7

t: 1.705.719.1100 | f: 1.705.719.1109 www.exp.com

Stockpile #:

General Descrition of Stockpile Material:

Client: Ferma Group
Project Name: Carden Quarry - Lab Testing
Project Number: BAR-00008977-D0

Date: March 14, 2017

3/32 - 1/4" Stone

Test	Method	Result
Organic Impurities	LS-610	!
Micro-Deval	LS-618	23.0
Accelerated Mortar Bar	LS-620	0.156
Potential Expansivity of Aggregates	CSA-A23.2-14A	Not Complete(1)
Alkali-Carbonate Rectivity	CSA-A23.2-26A	CSA-A23.2-26A Non-Expansive

(1) - Test takes 1 year to complete

t: 1.705.719.1100 | f: 1.705.719.1109 14 Cedar Pointe Dr., Unit 1510 Barrie, Ontario www.exp.com L4N 5R7

Project Name: Carden Quarry - Lab Testing Project Number: BAR-00008977-D0

Client: Ferma Group

Date: March 14, 2017

Stockpile #:

General Descrition of Stockpile Material:

1/4" to 5/8" Stone

					Potei	Potential Produc	cts - Coarse Aggregate	Aggreg	ate		
Test	Method	Result	OPSS 1002 Concrete Coarse Aggregate	OPSS (MUNI) 1003 Base Asphalt - Coarse Aggregate	OPSS (MUNI) 1003 Surface Asphalt - Coarse Aggregate	OPSS (PROV) 1003 Base Asphalt - Coarse Aggregate	OPSS (PROV) 1003 - Surface Asphalt - Coarse Aggregate	OPSS 1004 Clear Stone	OPSS 1004 Rip-Rap/Gabion/Rock Protection	OPSS 1006 Surface Treatment Class 2	OPSS 1010 Aggregates (Granular 'A", Granular "B-2")
% Finer than 75 um	LS-601	0.8	Pass	Pass	Pass	SS	Pass				
Absorption	LS-604	0.88	Pass	Pass	Pass	Pass	Pass		Pass		
Magnesium Sulphate Soundness (%)	LS-606	8	Pass	Pass	Pass (3)	Pass	Pass			Pass	
% Crushed	LS-607	100		Pass	Pass			Pass		Pass	Pass
Flat and Elongated	LS-608	10.6	Pass	Pass	Pass	Pass	Pass		Pass	Pass	
Petrographic Number	LS-609	122	Pass (1)		Pass (4)(6)		Pass (8)				
Organic Impurities	LS-610										
Acid Insoluable Residue	LS-613	4.7			Note (5)		Note (5)			Note (5)	
Freeze/Thaw	LS-614	19.6	Fail	Fail (2)	Fail (2)	Fail (2)	Fail (2)			Fail (2)	
2 Faces Crushed	LS-617	100			Pass						
Micro-Deval	LS-618	16.8	Pass (1)	Pass	Pass (3)	Pass	Pass (7)	Pass	Pass	Pass	Pass
Accelerated Mortar Bar	LS-620	0.121	Pass								
Alkali-Carbonate Rectivity	CSA-A23.2-26A	Non-Expansive	Pass							12.	
Notes:											

- (1) Does Not Meet Specification for Concrete Pavement
- (2) Does Not Meet Specification for Freeze/Thaw See Test Method LS-606 Results for Pass/Fail
- (3) Meets Specifications for SP 4.75, 9.5, 12.5, HL3, HL3F, HL3HS, HL4, HL4F
- (4) For SP4.75, SP9.5 & SP12.5 and For Projects North of Washago/Norland and Highway 35, Will Need To Be Blended With Non-Carbonate Rock Such That LS-613 Test Is Greater Than 60%
- (5) For Projects North of Washago/Norland and Highway 35, Will Need To Be Blended With Non-Carbonate Rock Such That LS-613 Is Greater Than 60%
- (6) For HL1, DFc, SMA 9.5 and 12.5, SP 12.5 FC1 and SP12.5FC2. For HL3, HL3F, HL3HS, HL4 and HL4F see Note (5)
- (7) For SP9.5 and SP12.5 Only
- (8) For SP 9.5 & SP12.5 on Projects North of Washago/Norland and Highway 35, Will Need To Be Blended With Non-Carbonate Rock Such That LS-613 Is Greater Than 60%

L4N 5R7

Project Name: Carden Quarry - Lab Testing

Client: Ferma Group

Project Number: BAR-00008977-D0

Date: March 14, 2017

Stockpile #:

General Descrition of Stockpile Material:

1/4" to 3/4" Stone


Magnesium Sulphate Petrographic Number Flat and Elongated Soundness % Finer than 75 um Alkali-Carbonate Rectivity Accelerated Mortar Bar Organic Impurities Absorption Vicro-Deval Acid Insoluable Residue Faces Crushed reeze/Thaw Crushed (%) Test CSA-A23.2-26A LS-606 Method LS-614 LS-613 LS-604 LS-601 LS-620 LS-618 LS-617 LS-610 LS-609 LS-608 LS-607 Non-Expansive 0.132 Result 21.7 16.7 100 1.02 5.1 119 5.9 100 8.3 0.9 Pass (1) Fail (2) Pass Pass Pass Pass Pass Pass Pass OPSS 1002 Concrete Coarse Aggregate Fail (2) Pass Pass Pass Pass Pass OPSS (MUNI) 1003 Base Asphalt -Coarse Aggregate Pass (3) Pass (4) Pass (3) Pass (3) Fail (2) Note (5) OPSS (MUNI) 1003 Surface Asphalt -Coarse Aggregate Pass Pass Pass Potential Products - Coarse Aggregate Fail (2) Pass Pass Pass Pass OPSS (PROV) 1003 Pass Base Asphalt -Coarse Aggregate Pass (7) Fail (2) Pass (8) Note (5) Pass (7) Pass Pass OPSS (PROV) 1003 Surface Asphalt -Coarse Aggregate Pass Pass OPSS 1004 Clear Stone Pass Pass Pass OPSS 1004 Rip-Rap/Gabion/Rock Protection Fail (2) Note (5) Pass Pass Pass Pass OPSS 1006 Surface Treatment Class 2 Pass OPSS 1010 Pass Aggregates (Granular "A", Granular "B-2")

- (1) Does Not Meet Specification for Concrete Pavement
- (2) Does Not Meet Specification for Freeze/Thaw See Test Method LS-606 Results for Pass/Fail
- (3) Meets Specifications for SP 4.75, 9.5, 12.5, HL3, HL3F, HL3HS, HL4, HL4F
- (4) For SP4.75, SP9.5 & SP12.5 and For Projects North of Washago/Norland and Highway 35, Will Need To Be Blended With Non-Carbonate Rock Such That LS-613 Test Is Greater Than 60%
- (5) For Projects North of Washago/Norland and Highway 35, Will Need To Be Blended With Non-Carbonate Rock Such That LS-613 Is Greater Than 60%
- (6) For HL1, DFc, SMA 9.5 and 12.5, SP 12.5 FC1 and SP12.5FC2. For HL3, HL3F, HL3HS, HL4 and HL4F see Note (5)
- (7) For SP9.5 and SP12.5 Only
- (8) For SP 9.5 & SP12.5 on Projects North of Washago/Norland and Highway 35, Will Need To Be Blended With Non-Carbonate Rock Such That LS-613 Is Greater Than 60%

Client: Ferma Aggregates Inc. Project Name: Ferma's Carden Quarry Project Number: BAR-00008977-D0 Date: March 24, 2017

Appendix C – Test Result Reports – LS-609, CSA A23.2-14A, CSA A23.2-26A

LS-609 (Part A) - Coarse Aggregate Petrographic Analysis (Petrographic Number, PN)

SAMPLE#; Pite #2		ANALY	ANALYST: Kieran Maddock / Ashley Meagher	ock / Ashley Me	agher			DAT	DATE TESTED: November 24, 2016	ember 24, 2016	
TESTING LAB: exp Services Inc.	vices Inc.	TEL: 90	TEL: 905 793-9800		FAX: 9	905 793 0641		LAB#:	*		
SAMPLED BY:		DATES	DATE SAMPLED: Nove	November 3, 2016				exp	exp Sample #: 16-228	82	
SOURCE NAME: Ferma's Kirkfield Quarry	s's Kirkfield Quarry	SOURC	SOURCE LOCATION: Kirkfield, ON	Kirkfield, ON				exp	exp Project #: BAR-	BAR-00008977-D0	
AGGREGATE TYPE: HL-8	F-8	AGGRE	AGGREGATE PRODUCT:	e				LOT		SUBLOT#:	***
CONTRACT:		CONTR	CONTRACT LOCATIONIHWY.:	IIHWY.:				CON	CONTRACTOR		
ST. Allerda	TVBE	TYPE	P37.5	P37.5/ R19	P19.07	P19.0/R13.2	P13.2 / R9.5	R9.5	P 9.5 /	9.5 / R4.75	Name of the last
		No.	Mass (g)	% of Fraction	Mass (g)	% of Fraction	Mass (g)	% of Fraction	Mass (g)	% of Fraction	Composition (%)
CARBONATE (hard; silly, hard)	, hard)	10	1733.7	41.7	873.7	57.8	0.0	0.0	0.0	0.0	43.8
CAMBONA LE (sunace weathenn) medium hard; silly, medium hard)	CAKBUNATE (Surface weathering: silty, surface weathering; medium hard; silty, medium hard)	20	615.1	14.8	215.5	14.3	0.0	0.0	0.0	0.0	13.9
CARBONATE (slightly cherty. <5% chert)	lerty. <5% chert)	21	1495.7	36.0	329.3	21.8	0.0	0.0	0.0	0.0	30.5
TOTAL GOOD AGGREGATE	SATE	ı	3844.5	92.5	1418.5	63:6	0.0	0.0	0.0	0.0	88.2
CARBONATE (soft; silty, soft; slightly shaley)	soft; slightly shaley)	32	146.7	3.5	45.7	3.0	0.0	0.0	0.0	0.0	3.2
CHERT - CHERTY CARI	CHERT - CHERTY CARBONATE (< 20% leached chert)	56	164.6	4.0	46.9	3.1	0.0	0.0	0.0	0.0	5.00
TOTAL FAIR AGGREGATE	VTE		311.3	7.5	92:6	6.1	0.0	0:0	0.0	0.0	6.8
TOTAL POOR AGGREGATE	ATE	1	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0
TOTAL DELETERIOUS AGGREGATE	AGGREGATE		0:0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0:0
		TOTALS	4155.8	100.0	1511.1	100.0	0.0	0.0	0.0	0.0	95.0
tsumate % Crushed =	(Not included in PN calculations)								1		
	Totals (with contaminants)				THE STATE OF		N. S.				
	₩ 600D		95.9 X 1 =	92.5	93.9 X 1 =	93.9	0.0 X 1 =	0.0	0.0 X 1 =	0.0	
	% FAIR		7.8 X 3 ==	22.5	6.1 X3=	18.4	0.0 X 3 =	0.0	0.0 X 3 =	0.0	Weinhted
Additional Information:	% POOR		0.0 X 6 =	0.0	0.0 X 6 =	0.0	0.8 X G =	0.0	0.8 X 6 =	0.0	Average PN
	% DELETERIOUS	RIOUS	0.0 X 10 =	0.0	0.0 X 10 =	0.0	0.0 X 10 =	0.0	0.0 × 10 =	0.0	
	⇒ Nd		11	115.0	112.3	2.3	0				
COARSE AGGREGATE	COARSE AGGREGATE GRADATION OF AS-RECEIVED SAMPLE, % RETAINED	E, % RETAINE	٩								0
P75.0/R53.0	P53.0 IR37.5 P37.5 I R26.5	1.5	P26.5 R19.0		P19.0 I R13.2		P13.2 I R9.5	-	P 9.5 I R4.75		114
(1)	-	5.3	29	63.9	25.8	8ċ	4.3		0	0.8	
PH-CC-343a 15-01											

Approved By:

Auseyk Maghen

Ashley Meagher, Geoscientist

exp Services Inc., 1595 Clark Blvd., Brampton ON L6T 4V1

November 24, 2016 Date

LS-609 (Part A) - Coarse Aggregate Petrographic Analysis (Petrographic Number, PN)

TESTING LAB: exp Services Inc. SAMPLED BY: SOURCE NAME: Ferma's Kirklield Quarry AGGREGATE TYPE: HL-4 CONTRACT:								100			
SOURCE NAME: Ferma's Kirklield Quarry SOURCE NAME: Ferma's Kirklield Quarry AGGREGATE TYPE: HL-4 CONTRACT:		JEL: 90	TEL: 905 793-9800		FAX: 9	905 793 0641		LAB	**		
SOURCE NAME: Ferma's Kirkfield Quarry AGGREGATE TYPE: HL-4 CONTRACT:		DATESAM	AMPLED: November 3, 2016	mber 3, 2016				dxe	exp Sample #: 16-230	30	
AGGREGATE TYPE: HL-4 CONTRACT:		SOURCEL	E LOCATION: Kinkfield, ON	Intrield, ON				dxe	exp Project #: BAR-00008977-D0	00008977-D0	
CONTRACT:		AGGREGA	GATE PRODUCT:	1				LOT	華	SUBLOT #:	#.
Control of the contro		CONTR	CONTRACT LOCATIONIHWY.:	HWY.:				Ô	CONTRACTOR:		
10/11	TO STATE OF THE PARTY OF THE PA	TYPE	P26.57 R19	R19	P19.0 / R13.2	The Address	P13.2 / R9.5	A. A	P 9.5 / R4.75	が一般である。	Wainhlad
		13.1	Mass (g)	% of Fraction	Mass (g)	% of Fraction	Mass (g)	% of Fraction	Mass (g)	% of Fraction	Composition (%)
CARBONATE (hard; sifty, hard)		10	0.0	0.0	852.3	55.2	291.0	53.9	120.0	54.9	54.4
CARBONATE (surface weathering; suffy, surface weathering; medium hard; silty, medium hard)	thenng:	20	0.0	0.0	262.3	17.0	134.8	25.0	48.7	22.3	21.9
CARBONATE (slighly cherty: <5% chert)		21	0.0	0.0	344.0	22.3	62.4	11.6	26.3	12.0	13.7
TOTAL GOOD AGGREGATE	The Bank		0.0	0.0	1458.6	94.5	488.2	90.4	195.0	89.2	90.0
CARBONATE (soft; sitty, soft; slightly shaley)		35	0.0	0.0	22.0	1.4	9.3	1.7	10.4	4.8	3.3
CARBONATE (deeply weathered; silty, deeply weathered)	sred)	42	0.0	0.0	5.2	0.3	0.0	0.0	0.0	0.0	0.1
CHERT - CHERTY CARBONATE (< 20% leached chen)	ert)	56	0.0	0.0	57.6	3.7	40.7	7.5	12.7	5.8	5.9
TOTAL FAIR AGGREGATE	The second		0.0	0.0	84.8	5.5	50.0	9.3	23.1	10.6	9.2
CARBONATE (shaley, clayey; slity, clayey)		43	0.0	0.0	0.0	0.0	2.0	0.4	9.0	0.3	0.2
TOTAL POOR AGGREGATE	TOWNS TO SERVICE	ą	0.0	0.0	0.0	0.0	2:0	0.4	9.0	0.3	0.2
SHALE		61	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0.4	0.2
TOTAL DELETERIOUS AGGREGATE	WASHING TO		0.0	0.0	0.0	0.0	0:0	0.0	6.0	0.4	0.2
		TOTALS	0.0	0.0	1543.4	100.0	540.2	100.0	218.7	100.0	100.0
Estimate % Crushed = CONTAMINANTS 100 (Not Included in Pin calculations)	calculations)	100		Mary Mary				Laborator 2			
Totals (with contaminants)	Inants)	BER STATE	THE PERSON	TO STANKE				THE PERSON	STATES AND A STATE OF THE STATE		TOWN THE REAL PROPERTY.
	% GOOD		100.0 X 1 =		94.5 X 1 =	94.5	90.4 X 1=	90.4	89.2 X 1=	89.2	
	% FAIR		0.0 X 3 =		5.5 X 3 =	16.5	93 X 3=	27.8	10.6 X 3 =	31.7	Weighted
Additional Information:	% POOR		0.0 X 6 =		0.0 X 6 ≈	0.0	0.6 X 6 =	2.2	0.3 X 6 =	1.6	Average PN
	% DELETERIOUS		0.0 X 10 =		0.0 X 10 =	0.0	0.0 X 10 =	0.0	0.4 X 10 =	4.1	
	PN =				111	7	1	120	127	127	
COARSE AGGREGATE GRADATION OF AS-RECEIVED SAMPLE, % RETAINED	IVED SAMPLE,	% RETAINE	Q								
P75.0/R53.0 P53.0 IR37.5	P37.51 R26.5		P26.5 I R19.0		P19.0 I R13.2		P13.2 I R9.5		P 9.5 I R4.75		122
	•		0.5	10	18	18.6	27	27.3	53	53.6	

Approved By:

Assuyk Menglien

Ashley Meagher, Geoscientist

exp Services Inc., 1595 Clark Blvd., Brampton ON L6T 4V1

November 24, 2016

LS-609 (Part A) - Coarse Aggregate Petrographic Analysis (Petrographic Number, PN)

1												
SAMPLE #: Pile #1			ANALY	ANALYST: Kieran Maddock / Ashley Meagher	ock / Ashley Me	agher			DAT	E TESTED: Nov	DATE TESTED: November 22, 2016	
TESTING LAB: exp Services Inc.	s inc.		TEL: 90	TEL: 905 793-9800		FAX: 9	905 793 0641		LAB #:	#		
SAMPLED BY:			DATES	DATE SAMPLED: November 3, 2016	mber 3, 2016				exp	exp Sample #: 16-225	25	
SOURCE NAME: Ferma's Kirklield Quarry	Grkfield Quarry		SOURC	SOURCE LOCATION: Kirkfield, ON	irkfield, ON				exp		00-22680000	
AGGREGATE TYPE: 3/8" Clear Stone	Sear Stone		AGGREGATE	GATE PRODUCT:	يا				LOT #:	1	SUBLOTE	ş
CONTRACT:	300		CONTR	CONTRACT LOCATIONIHWY.:	HWY.:				SOS	CONTRACTOR:		
	TVDE		TYPE	P26.51 R19	/ R19	P19.0 / R13.2	1	P13.2 / R9,5	The second	P 9.5 / R4.75		100
			No.	Mass (g)	% of Fraction	Mass (g)	% of Fraction	Mass (g)	% of Fraction Mass (g)	Mass (g)	% of Fraction	Composition (%)
CARBONATE (hard; silty, hard)	ird)		01	0.0	0.0	0.0	0.0	331.0	62.1	134.1	64.4	63.6
LAKBONA IE (surace wealneing: sily, surace wealheing: medium hard; sily, medium hard)	nenng; silly, surface wealhe hard)	iging:	20	0.0	0.0	0.0	0,0	122.8	23.0	29.0	13,9	16.8
CARBONATE (slightly cherty: <5% chert)	r. <5% chert)		21	0.0	0.0	0.0	0.0	54.2	10.2	17.9	8.6	9.1
TOTAL GOOD AGGREGATE		The state of the s	1	0.0	0.0	0.0	0.0	508:0	95.2	181:0	86.9	89.4 -
CARBONATE (soft; silty, soft; slightly shaley)	t; slightly shafey)		35	0.0	0.0	0.0	0.0	15.8	3.0	10.7	5.1	4.4
CHERT - CHERTY CARBONATE (< 20% leached chert)	IATE (< 20% leached chert		26	0.0	0.0	0.0	0.0	8.8	1.6	11.4	5.5	4.3
TOTAL FAIR AGGREGATE		HATCHE SE	_	0.0	0.0	0.0	0.0	24.6	4.6	22:1	10.6	8.7
CARBONATE (shaley, clayey, sifty, clayey)	y, silty, clayey)		43	0.0	0.0	0.0	0'0	0.8	0.1	5.2	2.5	8.
TOTAL POOR AGGREGATE		THE STATE OF		0.0	0.0	0.0	0.0	0.8	0.1	5.2	2.5	1.8
SHALE			61	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.3	0.2
TOTAL DELETERIOUS AGGREGATE	GREGATE			0.0	0.0	0.0	0.0	0.0	0.0	7.0	0.3	0.2
			TOTALS	0.0	0.0	0.0	0.0	533.4	100.0	208.3	100.0	100.0
100	(Not Included in PN calculations)	ilculations)			STATE OF THE PARTY							
	Totals (with contaminants)	ants)					DOMESTIC OF	ESTERNING THE	D. S. J. Market	A THE REAL PROPERTY.	Manager 12	
		@ G000 ₩		100.0 X 1 B		93.9 X 1 =		95.2 X1=	95.2	86.9 X1=	86.9	
	. 1	% FAIR		0.0 X 3 =		6.1 X 3 =		4.6 X 3 =	13.8	10.6 X 3 =	31,8	Weighted
Additional Information:	a. I	% POOR		0.0 X 6=		= 9 X 0'0		0.1 X 6 =	6.0	2.5 X 6 =	15.0	Average PN
1		% DELETERIOUS		0.0 X 10 =		0,0 X 10 =		0.0 X 10 =	0.0	0,3 X 10 =	3.4	
	H	PN=						110	0	+	137	
COARSE AGGREGATE GRADATION OF AS-RECEIVED SAMPLE, % RETAINED	ADATION OF AS-RECEIVE	ED SAMPLE, %	RETAINE	۵								
P75.0/R53.0 P5	P53.0 IR37.5	P37.51 R26.5		P26.5 I R19.0		P19.0 (R13.2		P13.2 I R9.5		P 9.5 I R4.75		129
•	•	•		•		0.1	-	31.4	4	39	68.5	
PH-CC-343a 15-01												

Approved By:

Ashingk ry Lengther

Ashley Meagher, Geoscientist exp Services Inc., 1595 Clark Blvd., Brampton ON L6T 4V1

November 22, 2016

LS-609 (Part A) - Coarse Aggregate Petrographic Analysis (Petrographic Number, PN)

			NAME .	ANALISI: Netali maluoca	5				DAT	DATE TESTED: November 21, 2016	ember 21, 2016	
TESTING LAB: exp Services Inc.	hc.		TEL: 90	TEL: 905 793-9800		FAX: 9	FAX: 905 793 0641		LAB#:	**		
SAMPLED BY:			DATES	DATE SAMPLED: November 3, 2016	ember 3, 2016			E	dxe	exp Sample #: 16-229	gı	
SOURCE NAME: Ferma's Kirkfield Quarry	rkfield Quarry		SOURC	SOURCE LOCATION: Kirkfield, ON	Kirkfield, ON				dxe	exp Project #: BAR-00008977-D0	00-27-000	
AGGREGATE TYPE: 5/8-1/4" Clear Stone	- Clear Stone		AGGRE	AGGREGATE PRODUCT:	310				LOT#:	**	SUBLOT #:	# 1
CONTRACT;			CONTR	CONTRACT LOCATIONIHWY.:	HHWY.:				CON	CONTRACTOR:		
		Market A	TYPE	P26.5	P26.5 / R19	P19.0/R13.2		P13.2 / R9.5		P 9.5 / R4.75	ALIAS OF SALLS	Weinhtod
	THE THE PROPERTY AND THE PARTY	Market Co.	(b=; 3)	Mass (g)	% of Fraction	Mass (g)	% of Fraction	Mass (g)	% of Fraction	Mass (g)	% of Fraction	Composition (%)
CARBONATE (hard; silty, hard)	1)		10	0.0	0.0	873.7	57.8	283.1	52.7	112.9	52.5	53.5
CARBONATE (surface weathering; sitty, surface weathering; medium hard; sitty, medium hard)	sning; siffy, surface weatheri ard)	ng;	20	0.0	0.0	215.5	14.3	79.5	14.8	44.0	20.5	17.5
CARBONATE (slightly cherty: <5% chert)	<5% chert)		21	0.0	0.0	329.3	21.8	122.3	22.7	37.0	17.2	19.7
TOTAL GOOD AGGREGATE	Miles -	We have the		0.0	0.0	1418.5	93.9	484.9	90.2	193.9	90.2	90.8
CARBONATE (soft; sitly, soft; slightly shaley)	slightly shaley)		35	0.0	0.0	45.7	3.0	18.1	3,4	11.7	5.4	4.3
CHERT - CHERTY CARBONATE (< 20% leached chert)	ATE (< 20% leached chert)		26	0.0	0.0	46.9	3.1	30.5	5.7	8.6	4.0	4.3
TOTAL FAIR AGGREGATE		Landing and In-		0.0	0.0	92.6	6.1	48.6	0.6	20.3	9,4	8.6
CARBONATE (shaley, clayey, silly, clayey)	silly, dayey)			0.0	0.0	0.0	0.0	4.2	9.0	0.7	0.3	0.6
TOTAL POOR AGGREGATE		Proposite No.		0.0	0:0	0:0	0.0	4:2	8.0	0.7	0.3	0.6
TOTAL DELETERIOUS AGGREGATE	REGATE	A CONTRACTOR		0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		F	TOTALS	0.0	0.0	1511.1	100.0	537.7	100.0	214.9	100.0	100.0
Estimate % Crushed = 100	(Not included in PN calculations)	culations)	Sell Sell		院院员员	154.6						
	Totals (with conlaminants)	(Str	TO ME					BOSTON STREET				
	*	% GOOD		100.0 X 1 =		93.9 X 1 ==	93.9	90.2 X 1 =	90.2	89.3 X 1 =	89.3	
	%	% FAIR		0.0 X 3 =		6.1 X 3=	18.4	9.0 X 3=	27.1	10.4 X3=	28.3	Weighted
Additional Information;	%	% POOR		0.0 X 6 =		0.0 X 5 ≈	0.0	0.8 X 6 =	4.7 .	0.3 X 6 =	2.0	Average PN
	%	% DELETERIOUS		0.0 X 10 =		0.0 X 10 =	0.0	0.0 X 10 =	0.0	0.0 X 10 =	0.0	
	ď	= Nd				112	2	122	2	12	120	
COARSE AGGREGATE GRADATION OF AS-RECEIVED SAMPLE, % RETAINED	DATION OF AS-RECEIVE	D SAMPLE, %	RETAINE	Q								
P75.0/R53.0 P53	P53.0 IR37.5 P.	P37.5 R26.5		P26.5 R19.0		P19.01R13.2		P13.2 I R9.5		P 8.5 I R4.75		119
•	•	•		0	0.2	19	19.9	29.8	8	50.1		

Approved By:

Beeringt magine

Ashley Meagher, Geoscientist

November 21, 2016

exp Services Inc., 1595 Clark Blvd., Brampton ON L6T 4V1

1595 Clark Boulevard, Brampton, ON L6T 4V1 Tel:(905) 793-9800; Fax:(905) 793-0641

POTENTIAL EXPANSIVITY OF AGGREGATES (Test Method: CAN/CSA A23.2-14A)

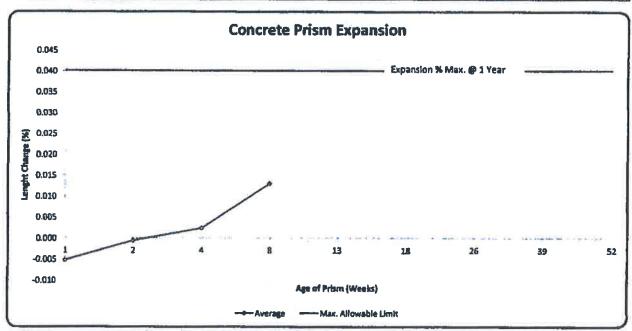
Kirkfield Ferma Aggregates

Project No.:

BAR-0009977-D0

Material: Source:

Pile #1


Date: 9-Feb-2017

Lab No,: 16-707 Date Received: 3-Nov-2016

Date Completed: 13-Dec-2017

Laboratory Test Data:

laspsed Weeks:	1	2	4		13	18	26	39	52
Specimen 10					Expansion (1	K)			
A	-0.006	0.000	0.003	0.012					
8	-0.005	-0.001	0.002	0.013					
С	-0.005	-0.001	0.002	0.013					
Average	-0,005	-0.001	0.002	0.028				1954 B	

		Accept	ance Requirements
Test Procedure	Test Result	Pavement	Structures, Sidewalk, Curb and Gutter, and Concrete Base
Concrete Prism Expension, % maximum @ 1 year CSA A23.2-14A			0.040

Approved By:

1595 Clark Boulevard, Brampton, ON L6T 4V1 Tel:(905) 763-6600; Fax:(905) 793-0641

POTENTIAL EXPANSIVITY OF AGGREGATES

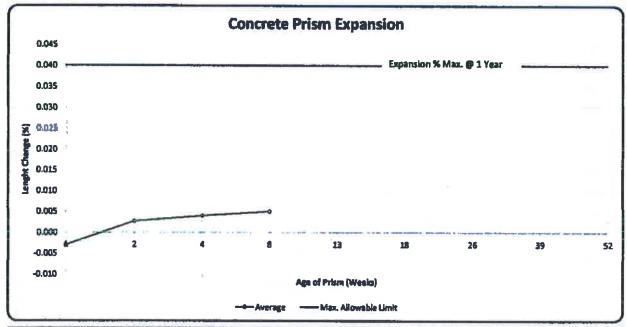
(Test Method: CAN/CSA A23.2-14A)

Client:

Kirkfield Ferma Aggregates

Project No.: Material: BAR-0008977-D0

Material: Source: Pile #2


Date : 9-Feb-2017 Lab No.: 16-707

Date Received: 3-Nov-2016

Date Completed: 13-Dec-2017

Laboratory Test Data:

Elespsed Weeks:	1	2	4	8	13	18	26	39	52
Specimen (D	Expansion (%)								
A	-0.003	0.004	0.006	0.006					
В	-0.002	0.002	0.004	0.004					
С	-0.004	0.002	0.002	0,004					
Average	-0.003	0.003	30.004	70.005	高温度	4 10 10 10 10 10 10 10 10 10 10 10 10 10		de la	F

i i	1	Acceptance Requirements		
Test Procedure	Test Result	Pavement	Structures, Sidewalk, Curb and Gutter, and Concrete Base	
Concrete Prism Expansion, % maximum @ 1 year CSA A23.2-14A			0.040	

Approved By:

Ammeriuel Yousif, c.e.t.

1595 Clark Boulevard, Brampton, ON LST 4V1 Tel:(905) 793-9800; Fax:(905) 793-0641

POTENTIAL EXPANSIVITY OF AGGREGATES (Test Method: CAN/CSA A23,2-14A)

Client:

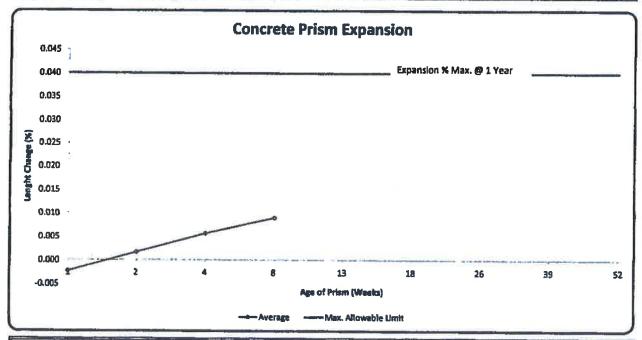
Kirkfield Ferma Aggregates

Project No.:

BAR-0008977-D0

Material: Source:

Pile #5


Date: 22-Feb-2017 Lab No,: 16-707

Date Received: 3-Nov-2018

Date Completed: 7-Dec-2017

Laboratory Test Data:

Elaspsed Weeks:	1	2	4	8	13	18	26	39	52
Specimen ID	Expansion (%)								
A	-0.003	0.002	0.005	0.009					1
8	-0.001	0.003	0.007	0.01					-
c	-0.003	0.000	0.005	0.009					1
Average	-0,002	0,002	0.00G	0,009	THE SECTION AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON	· 图数	Per en sa	Sept of	13.79

te la se	1	Acceptance Requirements		
Test Procedure	Test Result	Pavement	Structures, Sidewalk, Curb and Gutter, and Concrete Base	
Concrete Prism Expansion, % maximum @ 1 year CSA A23.2-14A			0.040	

Approved By:

1595 Clark Boulevard, Brampton ON L6T 4V1 Tel: (905) 793-9800 Fax: (905) 793-9841

POTENTIAL EXPANSIVITY OF AGGREGATES

(Test Method: CAN/CSA A23.2-14A)

Client:

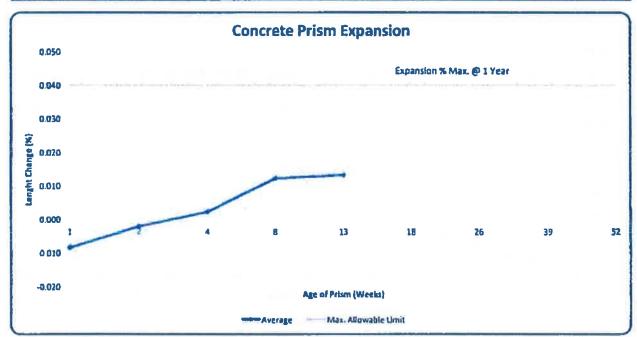
Kirkfield Ferma Aggregates

Project No.: Material: BAR-0008977-D0

Source:

Pile #8 (HL4)

Da Date Lab No.: 16-707


Date: 9-Mar-2017

Date Received: 3-Nov-2016

Date Completed: 13-Dec-2017

La	bora	lory	Test	Data
7				

Elaspsed Weeks:	1	2	4	8	13	18	26	39	52
Specimen ID					Expansion (%)				- 120
A	-0.009	-0.003	0.002	0.012	0.013				
В	-0.009	+0.002	0.002	0.011	0.014	7			
С	-0.008	-0.002	0.002	0.012	0.012				
Average	-0.009	-0.002	0.002	0.012	0.013	•		٠	•

		Acceptance Requirements			
Test Procedure	Test Result	Pavement	Structures, Sidewalk, Curb and Gutter, and Concrete Base		
Concrete Prism Expansion % maximum @ 1 year CSA A23.2-14A			0.040		

Approved By

Ammanuel Yousif, C.E.T

1595 Clark Boulevard, Brampton, ON L6T 4V1 Tel: (905) 793-9800; Fax: (905) 793-0641

POTENTIAL EXPANSIVITY OF AGGREGATES (Test Method: CAN/CSA A23,2-14A)

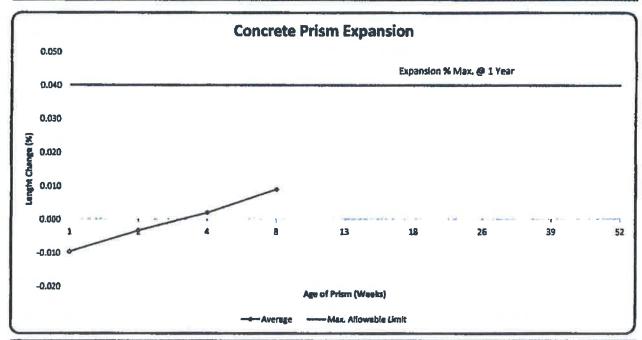
Client:

Kirkfield Ferma Aggregates

Project No.:

BAR-0008977-D0

Material: Source:


Pile #9

Date: 22-Feb-2017 Lab No,: 16-707

Date Received: 3-Nov-2016 Date Completed: 7-Dec-2017

Laboratory Test Data:

Elespsed Weeks:	1	2	4		13	18	26	39	52
Specimen ID		***************************************	****		Expansion (%)			
A	-0.010	-0.003	0.000	0.008					
В	-0.009	-0.002	0.004	0.01					
С	-0.010	-0.005	0.002	0.01					
Average	-0.010	-0.ects	0:002	0.009		S. Jolds	• 44-		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

		Accept	ance Requirements
Test Procedure	Test Result	Pavement	Structures, Bidewalk, Curb and Gutter, and Concrete Base
Concrete Prism Expansion, % maximum @ 1 year CSA A23.2-14A	3,955		0.040

Approved By:

ACCELERATED MORTAR BAR EXPANSION

(Test Method: LS-620 Or CSA A23.2-25A)

Client:

exp Barrie

Reported: December 16, 2016

Sampled:

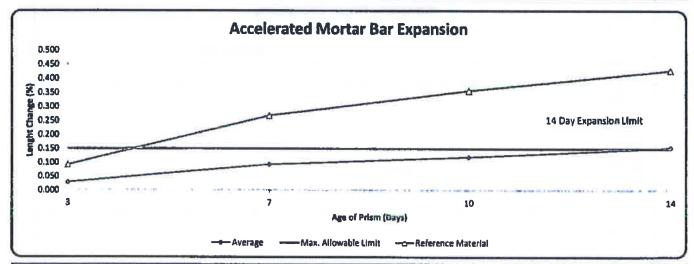
Received: November 3, 2016

BAR-00008977-D0 BAR-100 (Kirkfield Ferma Aggregate)

Type of Curing: 80°C NaOH

Project No.: Initial Reading:

2-Dec-16


Material: Pile #1

Source: Kirkfield Ferma Aggregate

Laboratory Test Data:

exp ID:

Elaspsed Days:	0	0		3			7			10			14		
Reading Date:	Dec. 1/16	2-Dec-16	5	Dec-16	NA E-turk	9	-Dec-16	5	1	2-Dec-1	6	10	5-Dec-16	5	
Specimen ID	Effective Guage Lenth	Initial Reading	Reading	Difference	% Expansion	Significani Remarks									
A	257	3.153	3.226	0.073	0.028	3.394	0.241	0.094	3,464	0,311	0.121	3.554	0.401	0.156	
В	257	2.886	2.956	0.070	0.027	3.119	0.233	0.091	3.185	0.299	0.116	3.275	0.389	0.151	
С	257	2.714	2.791	0.077	0.03	2.959	0.245	0.095	3.028	0.314	0,122	3.112	0.398	0.155	
Average		-			0.028	200		0.093	10	5,11	0.12	757		0.154	

			Acceptance Requirements				
Test Procedure	Test Number	Test Result	Pavement	Structures, Sidewalk, Curb and Gutter, and Concrete Base			
Accelerated Mortar Bars, % Expansion at 14 days (Sample ID:)	LS-620	0.154	0.150 Max	0.150 Max			
Accelerated Mortar Bars, % Expansion at 14 days Reference Material	LS-620	0.429		V			

Approved By:

ACCELERATED MORTAR BAR EXPANSION

(Test Method: LS-620 Or CSA A23.2-25A)

Client:

exp Barrie

Reported: December 16, 2016

Sampled:

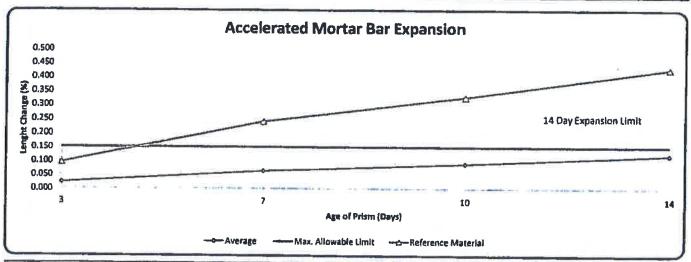
Received:

November 3, 2016

Type of Curing: 80°C NaOH

Source: Kirkfield Ferma Aggregate

Project No.: Initial Reading:


BAR-00008977-D0 BAR-100 (Kirkfield Ferma Aggregate) 2-Dec-16

Material:

Laboratory Test Data:

exp ID:

Elaspsed Days;	0	0		3	******		7			10	-		14	T	C-Facilities Colonial Colonia
Reading Date:	2-Dec-16	2-Dec-16	5	-Dec-16			Dec-1	6	1	2-Dec-1	6	1	5-Dec-1	6	
Specimen ID	Effective Guage Lenth	initial Reading	Reading	Difference	Expansion	Reading	Difference	× Expansion	Reading	Difference	% Expansion	Reading	Difference	% Expansion	Significan Remarks
A	256	1.67	1.736	0.066	0.026	1.84	0.17	0.066	1.904	0.234	0.091	1.985	0.315	0.123	
9	255	0.769	0.826	0.057	0.022	0.933	0.164	0.064	0.998	0.229	0.09	1.078	0.309	0.121	
c	254	-0.482	-0.429	0.053	0.021	-0.326	0.156	0.061	-0.257	0.225	0.089	-0.176	0.306	0.12	
Average	1		WAY PA	, A	0.023	£1 - 8	er y	0.064	di i	1	0.09			0.121	

			Acceptance Requirements				
Test Procedure	Test Number	Test Result	Pavement	Structures, Sidewalk, Curb and Gutter, and Concrete Base			
Accelerated Mortar Bars, % Expansion at 14 days (Sample ID:)	LS-620	0.121	0.150 Max	0.150 Max			
Accelerated Mortar Bars, % Expansion at 14 days Reference Material	LS-620	0.429		i			

Approved By:

ACCELERATED MORTAR BAR EXPANSION

(Test Method: LS-620 Or CSA A23.2-25A)

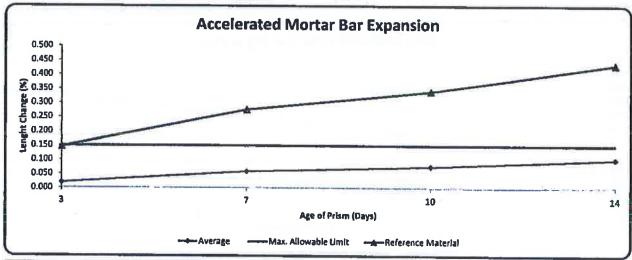
Client:

exp Barrie

BAR-00008977-D0 BAR-100 (Kirkfield Ferma Aggregate)

Project No.: **Date Cast:**

Nov. 9, 2016


Material: Pile #5 - Fine

Date: November 28, 2016 Type of Curing: 80°C NaOH

Source: Kirkfield Ferma Aggregate

Laboratory Test Data:

Elaspsed Days:	0.26	CLEOS C	Sec. 10	MAR	出去を	100 1	57	MEAN!	预料	10	11.74	d 6.50	14	24.72	B. 18 19 2 11
Reading Date:	运动的外流	10000000000000000000000000000000000000	通过	220世	674.5	形被			Mr. L	1000	10,5	富裕	17.30%	TO W	1500
Specimen (D	Effective Guage Lenth	ljikiál Reading	Reading	Difference	Expansion	Reading	Difference	Expansion	Reading	Difference	- X	Reading	Difference	- 14. Expansion	Significant Remarks
Α	257	2.635	2.685	0.050	0.019	2.789	0.154	0.060	2.832	0.197	0.077	2.901	0.266	0.104	
В	257	0.133	0.181	0.048	0.019	0.281	0.148	0.058	0.324	0.191	0.075	0.387	0.254	0.100	
С	257	2.957	3.007	0.050	0.019	3.107	0.150	0.058	3.153	0.196	0.076	3.220	0.263	0.102	
Average		5.200			0.019			0.059	際数		0.076		Carl	0.102	

	いを変め	FAMILY.	Accept	ance Requirements
Test Procedure	Test Number	Test Result	Pavement	Structures, Sjdewalk, Curb and Gutter, and Concrete Base
Accelerated Mortar Bars, % Expansion at 14 days (Sample ID:)	LS-620	0.102	0.150 Max	0.150 Max
Accelerated Mortar Bars, % Expansion at 14 days Reference Material	LS-620	0.434		

Testing Laboratory

November 28, 2016

Date

ACCELERATED MORTAR BAR EXPANSION

(Test Method: LS-620 Or CSA A23.2-25A)

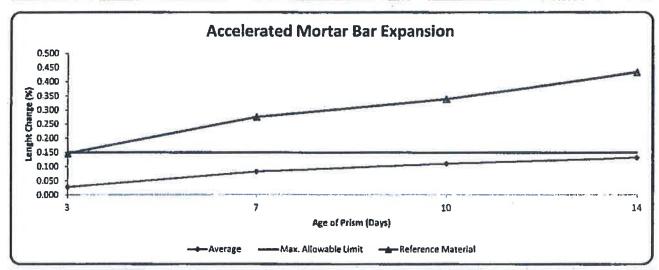
Client:

exp Barrie

Project No.: **Date Cast:**

Nov. 23, 2016

BAR-00008977-D0 BAR-100 (Kirkfield Ferma Aggregate)


Material: Pile #9

Date: December 12, 2016

Type of Curing: 80°C NaOH Source: Kirkfield Ferma Aggregate

Laboratory Test Data:

Elaspsed Days:	0	. 0	1, 1	3		A TOLL	13.7 4		74.	10	743	11.25	14	16.53	10 to \$1. 40
Réading Date:		a stranger than	7 1 E	196	77	(r, x)	dr. 10	in the	30.00	1400			1411	West	9.9.7
Specimen ID	Effective Guage Lenth	Initial Reading	Reading	Difference	% Expansion	Reading	Difference	% Expansion	Reading	Difference	% Expansion	Reading	Difference	-%- Expansion	Significant Remarks
A	254	0.636	0,566	0.070	0.028	0.427	0.209	0.082	0.362	0.274	0.108	0.311	0.325	0.128	
8	253	0.781	0.708	0.073	0,029	0,567	0,214	0.085	0.496	0.285	0.113	0.444	0.337	0.133	
С	255	0.371	0.441	0.070	0.027	0.582	0.211	0.083	0.656	0.285	0.112	0.714	0.343	0.135	
Average	9316	100000	思鎖	WAY.	0.028			0.083	14	域間	0.111	極	174	0.132	

	400		Acceptance Requirements				
Test Procedure	Test Number	Test Result	Pavement	Structures, Sidewalk, Curb and Gutter, and Coricrete Base			
Accelerated Mortar Bars, % Expansion at 14 days (Sample ID:)	LS-620	0.132	0.150 Max	0.150 Max			
Accelerated Mortar Bars, % Expansion at 14 days Reference Material	LS-620	0.434					

Laboratory Representative Signature

Ammanuel Youst, C.E.T,

December 12, 2016

ACCELERATED MORTAR BAR EXPANSION

(Test Method: LS-820 Or CSA A23.2-25A)

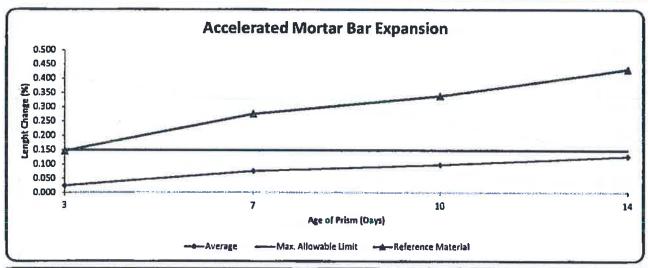
Client:

exp Barrie

Project No.: BAR-00008977-D0 BAR-100 (Kirkfield Ferma Aggregate)

Date Cast: Nov. 2

Nov. 23, 2016


Material: Pile #2

Date: December 12, 2016 Type of Curing: 80°C NaOH

Source: Kirkfield Ferma Aggregate

Laboratory Test Data:

Elaspsed Days:	0.	Ω	A Dark	Carry.	e Van	31.53	7		Self-te	10		VALUE	14	40.5%	
Reading Date:	TANTOPALLY	A STATE OF	类的	Berry.		14/1	700	225	300	1000	100	35, 2		101	14
Specimen ID	Effective Guage Lenth	Initial Reading	Reading	Difference	% Expansion	Reading	Difference	% Expansion	Reading	Difference	% Ekpansion	Reading	Difference	% Expansion	Significant Remarks
A	257	2.462	2.525	0.063	0.025	2.660	0.198	0.077	2.717	0.255	0.099	2.793	0.331	0.129	
В	256	1.576	1.642	0.066	0.026	1.770	0.194	0.076	1.833	0.257	0.100	1.905	0.329	0.129	
С	256	2.343	2.401	0.058	0.023	2.546	0.203	0.079	2.600	0.257	0.100	2.674	0.331	0.129	
Average	被挑战。		作图	A AND	0.025			0.077		TO THE PARTY	0.100	稿		0.129	

	100		Acceptance Requirements				
Test Procedure	Test Number	Test Result	Pavement	Structures, Sidewalk, Curb and Gutter, and Concrete Base			
Accelerated Mortar Bars, % Expansion at 14 days (Sample ID:)	LS-620	0.129	0.150 Max	0.150 Max			
Accelerated Mortar Bars, % Expansion at 14 days Reference Material	LS-620	0.434					

Testing Laboratory Representative Signature Ammanuel Yousil, C.E.T. December 12, 2016

Date

exp Services Inc. The new identity of Trow Associates 1595 Clark Boulevard, Bramplon Ontario, Canada, L6T 4V1 Telephone: (905) 793-9800 Fax: (905) 793-0641

Potential Alkali-Carbonate Reactivity of Carbonate Rocks **Test Report**

CA32

Sample Test No.: 262544-66

Report No.: 1

Date Reported: 06/12/2016

Client Sample ID:

Project No.:

BAR-00008977-D0

Date Sampled:

Date Received: 03/11/2016

Sample Location:

Sampled By:

Client

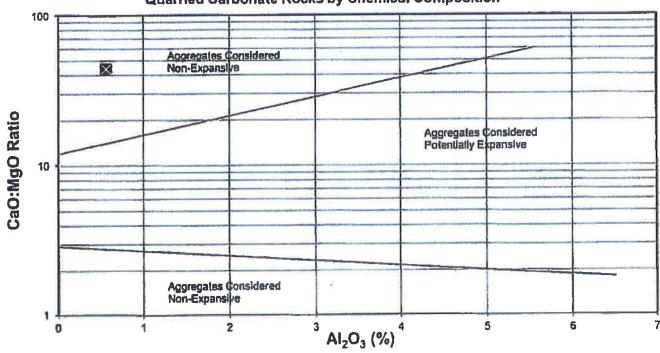
Sample Description:

Pile # 1

Sample Remark:

Aggregate Type:

Norminal Size/Type:


Kirkfield Ferma

Aggregate Source: Method of Analysis: Source Code:

Results of Analysis:

	CaO	MgO	CaO:MgO	Al ₂ O ₃
	(%)	(%)	Ratio	(%)
5	0.29	1.14	44.11	0.56

Determination of Potential Alkali-Carbonate Reactivity of Quarried Carbonate Rocks by Chemical Composition

Remark: We hereby certify the testing procedure in accordance with CAN/CSA A23.2-26A

Project Manager: Leigh Knegt

Approved By:

Date Approved: 06/12/2016

exp Services Inc. The new identity of Trow Associates 1595 Clark Boulevard, Brampton Ontario, Canada, L6T 4V1 Telephone: (905) 793-9800 Fax: (905) 793-0641

Potential Alkali-Carbonate **Reactivity of Carbonate Rocks Test Report**

CA32

Sample Test No.: 262544-42

Report No.: 2

Date Reported: 06/12/2016

Client Sample ID:

Project No.:

BAR-00008977-D0

Date Sampled:

Date Received: 03/11/2016

Sample Location:

Sampled By:

Client

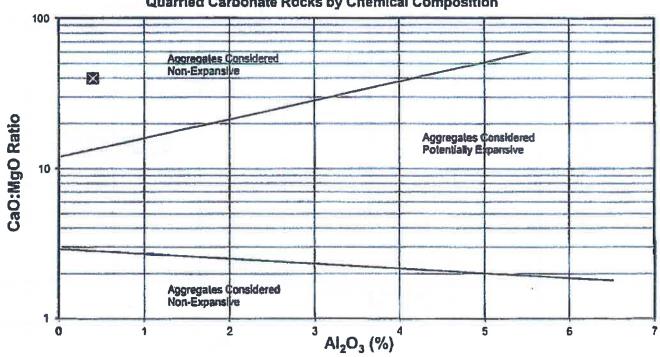
Sample Description:

Pile #2

Sample Remark:

Aggregate Type:

Norminal Size/Type:


Aggregate Source: Kirkfield Ferma Source Code:

Method of Analysis:

Results of Analysis:

CaO	MgO	CaO:MgO	Al ₂ O ₃
(%)	(%)	Ratio	(%)
51.06	1.28	39.89	0.40

Determination of Potential Alkali-Carbonate Reactivity of Quarried Carbonate Rocks by Chemical Composition

Remark: We hereby certify the testing procedure in accordance with CAN/CSA A23.2-26A

Project Manager: Leigh Knegt

Approved By:

Date Approved: 06/12/2016

exp Services Inc.
The new Identity of Trow Associates
1595 Clark Boulevard, Brampton
Ontario, Canada, L6T 4V1
Telephone: (905) 793-9800

Fax: (905) 793-9600

Potential Alkali-Carbonate Reactivity of Carbonate Rocks Test Report

CA32

Sample Test No.: 262544-43

Report No.: 3

Date Reported: 06/12/2016

Client Sample ID:

Project No.:

BAR-00008977-D0

Date Sampled:

Date Received: 03/11/2016

Sample Location:

Sampled By:

Client

Sample Description:

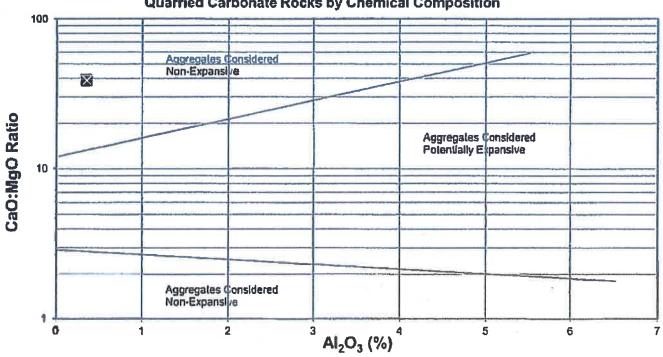
Pile#5

Sample Remark:

Aggregate Type:

Norminal Size/Type:

Aggregate Source:


Kirkfield Ferma

Source Code:

Method of Analysis: Results of Analysis:

CaO	MgO	CaO:MgO	Al ₂ O ₃
(%)	(%)	Ratio	(%)
52.96	1.37	38.66	0.35

Determination of Potential Alkali-Carbonate Reactivity of Quarried Carbonate Rocks by Chemical Composition

Remark: We hereby certify the testing procedure in accordance with CAN/CSA A23.2-26A

Project Manager: Leigh Knegt

Approved By:

Date Approved: 06/12/2016

exp Services Inc.
The new Identity of Trow Associates
1595 Clark Boulevard, Brampton
Ontario, Canada, L6T 4V1
Telephone: (905) 793-9800
Fax: (905) 793-0541

Potential Alkali-Carbonate Reactivity of Carbonate Rocks Test Report

CA32

Sample Test No.: 262544-44

Report No.: 4

Date Reported: <u>06/12/2016</u>

Client Sample ID:

Project No.:

BAR-00008977-D0

Date Sampled:

Date Received: 03/11/2016

Sample Location:

Sampled By:

Client

Sample Description:

Pile#6

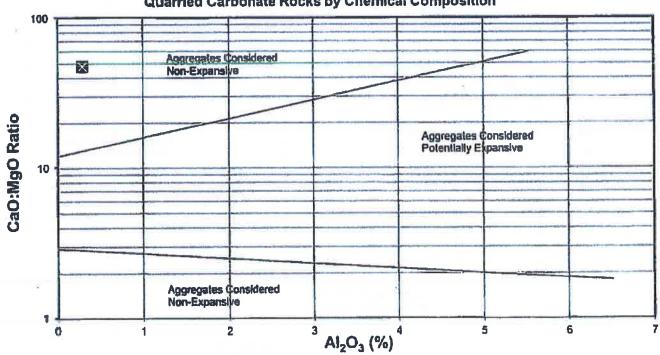
Sample Remark:

Aggregate Type:

Norminal Size/Type:

Aggregate Source:

Kirkfield Ferma


Source Code:

Method of Analysis:

Results	of	Analysis:
---------	----	-----------

CaO	MgO	CaO:MgO	Al_2O_3
(%)	(%)	Ratio	(%)
49.29	1.03	47.85	0.29

Determination of Potential Alkali-Carbonate Reactivity of Quarried Carbonate Rocks by Chemical Composition

Remark: We hereby certify the testing procedure in accordance with CAN/CSA A23.2-26A

Project Manager: Leigh Knegt

Approved By:

Date Approved: 06/12/2016

exp Services Inc. The new Identity of Trow Associates 1595 Clark Boulevard, Brampton Ontario, Canada, L6T 4V1 Telephone: (905) 793-9800 Fax: (905) 793-0641

Potential Alkali-Carbonate **Reactivity of Carbonate Rocks Test Report**

CA32

Sample Test No.: 262544-45

Report No.: 5

Date Reported: 06/12/2016

Client Sample ID:

Project No.:

BAR-00008977-D0

Date Sampled:

Date Received: 03/11/2016

Sample Location:

Sampled By:

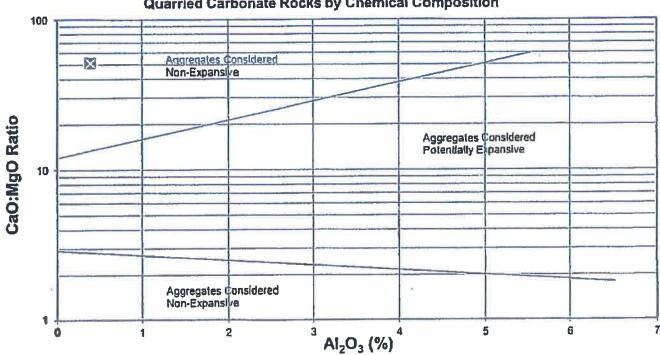
Client

Sample Description:

Pile#8

Sample Remark:

Aggregate Type: **Aggregate Source:** Norminal Size/Type:


Kirkfield Ferma

Source Code:

Method of Analysis: Results of Analysis:

CaO	MgO	CaO:MgO	Al ₂ O ₃
(%)	(%)	Ratio	(%)
49.72	0.97	51.26	0.40

Determination of Potential Alkali-Carbonate Reactivity of Quarried Carbonate Rocks by Chemical Composition

Remark: We hereby certify the testing procedure in accordance with CAN/CSA A23.2-26A

Project Manager: Leigh Knegt

Approved By:

Date Approved: 06/12/2016

exp Services Inc. The new identity of Traw Associates 1595 Clark Boulevard, Brampton Ontario, Canada, L6T 4V1 Telephone: (905) 793-9800

Fax: (905) 793-0641

Potential Alkali-Carbonate **Reactivity of Carbonate Rocks Test Report**

Sample Test No.: 262544-46

Report No.: 6

Date Reported: 06/12/2016

Client Sample ID:

Project No.:

BAR-00008977-D0

Date Sampled:

Date Received: 03/11/2016

Sample Location:

Sampled By:

Client

Sample Description:

Pile#9

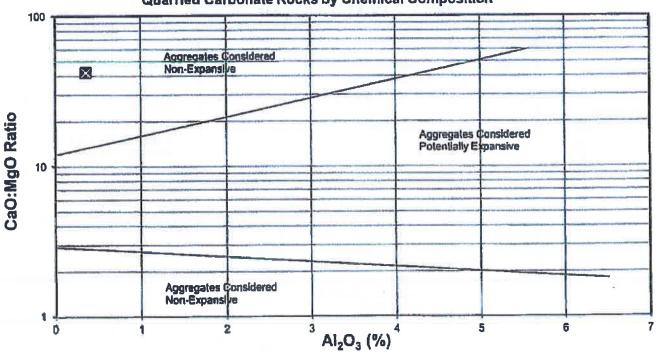
Sample Remark:

Aggregate Type:

Norminal Size/Type:

Aggregate Source:

Kirkfield Ferma


Source Code:

Results of Analysis:

Method of Analysis:

CaO	MgO	CaO:MgO	Al ₂ O ₃
(%)	(%)	Ratio	(%)
45.11	1.07	42.16	0.36

Determination of Potential Alkali-Carbonate Reactivity of Quarried Carbonate Rocks by Chemical Composition

Remark: We hereby certify the testing procedure in accordance with CAN/CSA A23.2-26A

Project Manager: Leigh Knegt

Approved By:

Date Approved: 06/12/2016

t: 1.705.719.1100 f: 1.705.719.1109 14 Cedar Pointe Dr., Unit 1510 Barrie, Ontario L4N 5R7 www.exp.com

Grain Size Analysis Report

Project Name:

Carden Quarry- Lab Testing

Project No.: Material:

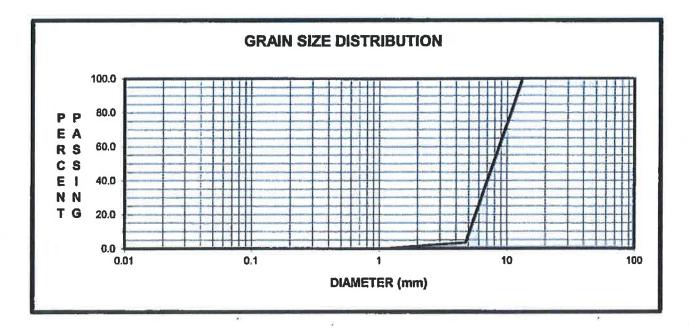
BAR-00008977-D0 1/4" to 3/8" Stone Sample Location: Carden Quarry- Pile #1 Client:

Ferma Group

Dated Tested:

October 18, 2016

Date Sampled:


October 12, 2016

Supplier:

Carden Quarry

SAMPLE DATA

Sieve Diameter (mm)	Percent Retained (%)	Percent Passing (%)	Spec (%)
150			2.2
75			
53			
37.5			
26.5		- PA	
19	7	The same of the sa	
13.2		· million in the control of the cont	
9.5	31.5	68.5	
4.75	96.6	3.4	
2.36	98.3	1.7	
1.18			
0.6		100	
0.3			
0.15			
0.075			

Distribution:	Prepared By:	Checked By:
Ferma Group	019	and by
	Scott Fraser, C.E.T.	Leigh Knegt P. Eng.

t: 1.705.719.1100 f: 1.705.719.1109 14 Cedar Pointe Dr., Unit 1510 Barrie, Ontario L4N 5R7

www.exp.com

Grain Size Analysis Report

Project Name:

Carden Quarry- Lab Testing

Project No.: Material:

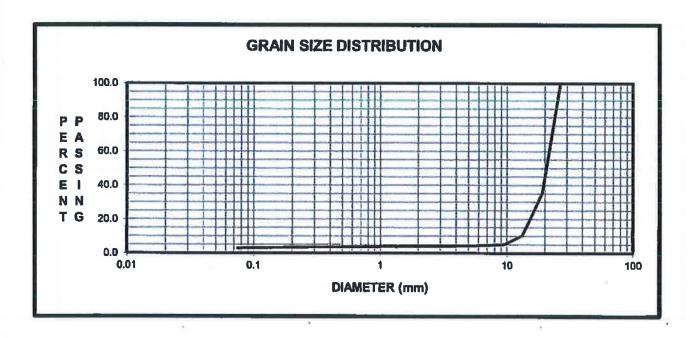
BAR-00008977-D0 3/8" to 1" Stone

Sample Location: Carden Quarry- Pile #2

Client:

Ferma Group

Dated Tested: Date Sampled:


Oct 19 2016 Oct 12 2016

Supplier:

Carden Quarry

SAMPLE DATA

Sieve Diameter (mm)	Percent Retained (%)	Percent Passing (%)	Spec (%)
150			
75		×	
53			
37.5			
26.5	1,4	98.6	
19	64.9	35.1	
13.2	89.7	10.3	
9.5	94.8	5.2	
4.75	95.8	4.2	
2.36	96.0	4.0	
1.18	96.1	3.9	
0.6	96.3	3.7	
0.3	96.5	3.5	
0.15	96.8	3.2	*
0.075	97.2	2.8	

Distribution:	Prepared By:	Checked By:
Ferma Group	014	(and and
	Scott Fraser, C.E.T.	Leigh Knegt P. Eng.

t: 1.705.719.1100 f: 1.705.719.1109 14 Cedar Pointe Dr., Unit 1510 Barrie, Ontario L4N 5R7

Grain Size Analysis Report

Project Name:

Carden Quarry- Lab Testing

Project No.:

BAR-00008977-D0

Material:

Screenings

Sample Location: Carden Quarry- Pile #5

Screenings

www.exp.com

Client: Ferma Group

Dated Tested:

October 20, 2016

Date Sampled:


October 12, 2016

Supplier:

Carden Quarry

SAMPLE DATA

Sieve Diameter (mm)	Percent Retained (%)	Percent Passing (%)	Spec (%)
150			
75			
53			
37.5			
26.5			
19			
13.2			
9.5			
4.75	2.1	97.9	
2.36	31.4	68.6	
1.18	54.3	45.7	
0.6	68.5	31.5	
0.3	77.3	22.7	
0.15	82.5	17.5	
0.075	86.1	13.9	

Distribution:	Prepared By;	hecked By:
Ferma Group	015	Soughtry
	For Scott Fraser, C.E.T.	Leigh Knegt P. Eng.

t: 1.705.719.1100 f: 1.705.719.1109 14 Cedar Pointe Dr., Unit 1510 Barrie, Ontario L4N 5R7 www.exp.com

Grain Size Analysis Report

Project Name:

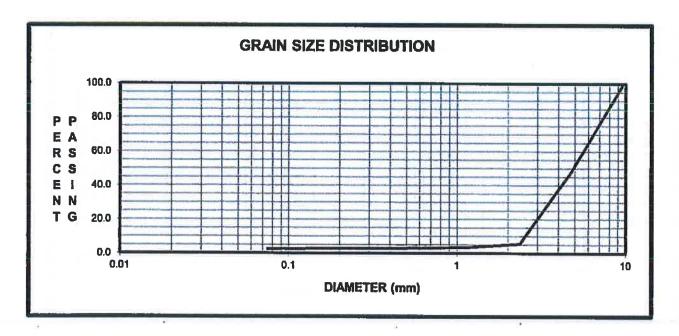
Carden Quarry- Lab Testing

Project No.: Material:

BAR-00008977-D0 3/32" - 1/4" Stone Sample Location: Carden Quarry- Pile #6 **Client:**

Ferma Group

Dated Tested:


October 20, 2016 Date Sampled: October 12, 2016

Supplier:

Carden Quarry

SAMPLE DATA

Sleve Diameter (mm)	Percent Retained (%)	Percent Passing (%)	Spec (%)
75			
53			
37.5	700000000000000000000000000000000000000		
26.5			
19			
13.2			
9.5			
6.7	1.4	98.6	
4.75	52.0	48.0	
2.36	94.5	5.5	
1.18	96.4	3,6	
0.6	97.0	3.0	
0.3	97.2	2.8	
0.15	97.4	2.6	-Al III
0.075	97.6	2.4	

Distribution:	Prepared By:	Checked By:
Ferma Group	At	South of
	For Scott Fraser, C.E.T.	Leigh Kriegt P. Eng.

t: 1.705.719.1100 f: 1.705.719.1109 14 Cedar Pointe Dr., Unit 1510 Barrie, Ontario L4N 5R7 www.exp.com

Grain Size Analysis Report

Project Name:

Carden Quarry- Lab Testing

Project No.: Material:

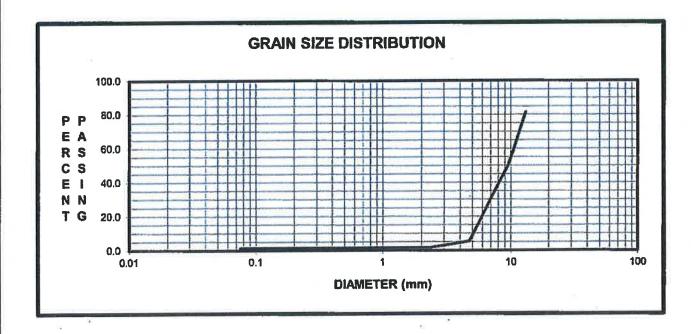
BAR-00008977-D0 1/4" to 5/8" Stone Sample Location: Carden Quarry- Pile #8 Client:

Ferma Group

Dated Tested:

October 17, 2016

Date Sampled:


October 12, 2016

Supplier:

Carden Quarry

SAMPLE DATA

Sieve Diameter (mm)	Percent Retained (%)	Percent Passing (%)	Spec (%)
150			
75			
53			
37.5			
26.5			
19			
13.2	18.6	81.4	
9.5	50.3	49.7	
4.75	94.6	5.4	
2.36	98.3	1.7	
1.18	98.5	1.5	
0.6	98.5	1.5	
0.3	98.6	1.4	
0.15	98.7	1.3	
0.075	98.8	1.2	

Distribution:	Prepared By:	Checked By:
Ferma Group	02	my
	for Scott Fraser, C.E.T.	Leigh Knegt P. Eng.

t: 1.705.719,1100 f: 1.705.719.1109 14 Cedar Pointe Dr., Unit 1510 Barrie, Ontario L4N 5R7 www.exp.com

Grain Size Analysis Report

Project Name:

Carden Quarry- Lab Testing

Project No.: Material:

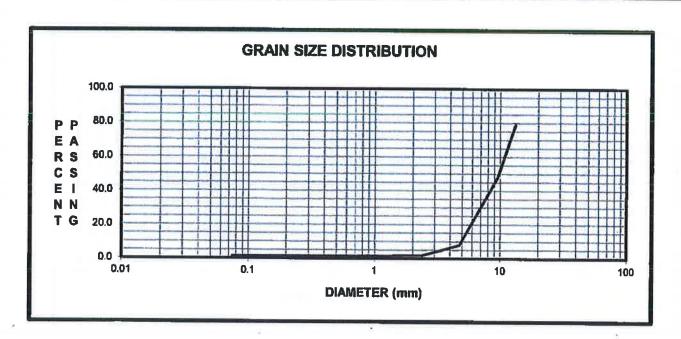
BAR-00008977-D0 1/4" - 3/4" Stone

Sample Location: Carden Quarry- Pile #9

Client:

Ferma Group

Dated Tested: Date Sampled:


October 17, 2016

Supplier:

October 12, 2016 Carden Quarry

SAMPLE DATA

Sleve Diameter (mm)	Percent Retained (%)	Percent Passing (%)	Spec (%)
150		- MI	
75			10-1
53			
37.5			
26.5			
19		The second secon	
13.2	21.0	79.0	
9.5	52.5	47.5	
4.75	92.1	7.9	
2.36	98.3	1.7	
1.18	98.5	1.5	
0.6	98.6	1.4	
0.3	98.6	1.4	
0.15	98.7	1.3	
0.075	98.8	1.2	

Distribution:	Prepared By:	Checked By:
Ferma Group	OF	
(cat.	Soott Fraser, C.E.T.	Leigh Knegt P. Eng.
	Jan Scott Flaser, C.E.T.	Leigh Knegr P. Eng.